Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions.

نویسندگان

  • Kuo-Liang Liu
  • Chien-Chen Wu
  • Ying-Jung Huang
  • Hwei-Ling Peng
  • Hwan-You Chang
  • Pin Chang
  • Long Hsu
  • Tri-Rung Yew
چکیده

A novel and disposable microchip (K-kit) with SiO(2) nano-membranes was developed and used as a specimen kit for in situ imaging of living organisms in an aqueous condition using transmission electron microscopy (TEM) without equipment modification. This K-kit enabled the successful TEM observation of living Escherichia coli cells and the tellurite reduction process in Klebsiella pneumoniae. The K. pneumoniae and Saccharomyces cerevisiae can stay alive in K-kit after continuous TEM imaging for up to 14 s and 42 s, respectively. Besides, different tellurite reduction profiles in cells grown in aerobic and anaerobic environments can be clearly revealed. These results demonstrate that the K-kit developed in this paper can be useful for observing living organisms and monitoring biological processes in situ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology

Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imag...

متن کامل

Physicochemical Characteristics and Biomedical Applications of Hydrogels: A Review

Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...

متن کامل

Biochemical profiling of microbes inhibiting Silver nanoparticles using symbiotic organisms

Silver nanoparticle therapeutics using symbiotic organisms can offer solutions to the current obstacles in antimicrobial therapies, because of cost-effective and eco-friendly properties over chemical and physical methods. In this study, we aim to synthesize silver nanoparticles using lichen (Parmotrema tinctorum) extract and evaluation of its antibacterial properties. Synthesized silve...

متن کامل

Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation

Advances in vacuum-tight in situ liquid cell TEM systems have attracted significant attention because of the ability to directly interpret chemical and electrochemical reactions within their native liquid environments [1]. Conducting quantitative in situ electrochemistry experiments within the S/TEM is feasible using the relatively new platform of in situ electrochemical S/TEM (ec-S/TEM). In th...

متن کامل

Biosynthesis of Cu and CuO nanoparticles using aqueous leaves extract of Sambucus nigra L.

In this research we are synthesized CuO nanoparticles (NPs) using water extract of. Also the total phenolic content of Sambucusnigra L. leaves water extract was measured by the Folin-Ciocalteu method. For confirmation the structure of synthesized bio-CuO-NPs we are employed X-ray Diffraction (XRD), Ultraviolet-visible (UV–vis), Fourier Transform Infrared (FTIR) spectroscopies, Scanning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2008